."B ° Belarus
Chapter

REQUIREMENTS & API.
Part |

llya Zakharau

API Platform Product Manager, 7 years of prior
BA experience

ﬁB ® Belarus
Chapter

WHY | AM
DOING THIS?

Building API tooling and products is my
current expertise, and | want to share it with
the public.

Such terms as “API economy,” “API-first”,
and “API market” have become quite popular
in recent years.

From my observations, few Business
Analysts are proficient in APl or have a
fractured understanding.

Offline APl workshop made by the BArszawa
community last February showed demand for
that topic.

MBA

% ° B
elarus .
.'B Chapter There will be two parts:

Part 1 will be more theoretical and more tedious.
We will talk about the definition of APl and API
definition, involved actors, breaking changes,
REST & HTTP, and other basics.

AG EN DA Part 2 will be more practice-oriented:

e Discussing the API design-first approach

e Diving into OpenAPI specification and
related tooling

e Decomposing one API case

MBA

What is API?

From Wikipedia:

“An application programming interface (API) is a way for two or more computer
programs to communicate with each other. It is a type of software interface,
offering a service to other pieces of software.”

It is a very vast definition, but there are two main pieces:

e interface
® service

IIBK

https://en.wikipedia.org/wiki/API

Definition from Sergey Konstantinov's "The API Book”"

“An APl is an obligation. A formal obligation to connect different programmable contexts”.

Roman aqueduct (1st century AD):

e Interconnects two areas

e Flow water is an analogy to data

e Backward compatibility has not been for
almost 2000 years

e Additional infrastructure was built to
produce and consume the water supply

- > RN !
¥ : AV R " =
gt A = p i RS ma S a
d % L .

https://github.com/twirl/The-API-Book
https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/

-
Another API definition (and last for today)
Let’s look from another perspective: APl is a distribution channel.

It is similar, but quite opposite to User Interface:
e Not for end-users.

e For developers who will build their solution for their end-users based on API.

You can integrate with API as a developer (Consumer) or develop API (Producer).
Both cases have their peculiarities. But today, we talk about the latter only.

IIBK

A few more definitions we need:

e API endpoint: a single instance of API with a unique address (URL). Sending
a required input to that URL triggers some command within your system and
returns an output about a successful result or failure.

Example: POST https.//ecomplatform/api/v1/purchases/{purchaseld}/cancel
e API call: sending a request to an API endpoint and getting a response.

e Client: a general term to identify someone or something calling your API.

ilBK

Actors and API Lifecycle

0oe Both Producers and Consumers are
'ﬁﬂw not only Developers, there are other
AP Producers eee roles involved in the SDLC:

e Business Analysts

e Architects

e QA/QAA Engineers

e Product Owners/Managers

e Delivery/Project Managers

e etc

eprecation
ntegration
.'BK

The Value Chain

%@b%@

API Platform API Developer

P4
=

End-user / Business
Actor

Business Owner

Why BA: traditional approach (simplified)

System 2 System 1 Client Users

Usually one or several APl consumers
API does provide access to functionality
API == functionality

Matter of tech design, not a BA part

-
Why BA: modern approach

e Therise of Cloud, SaaS, and
PaaS (thank you, Amazon)

I :CS’ accelerated the
N———
Customers & Partners Cloud

N interconnectivity of multiple

\—\ J ﬁ/ % systems and open APlIs.

I o Eatee i e That results in headless
e et : Sy "API-first" products (like Stripe),
where APl is the primary
interface.
2 ey | | l \ e Many consumers means many
' «»{:}—{:}— {:} j::} stakeholders have their own

N \g,ﬁ McosAemce Mcoservnce r ﬁc oservice Mcose vices needs, SO it iS a Work for a BA.
Some legacy sh t

brrrrr :
Microsenvces e Some APIs are subject to

C

regulations. .'BR

1 F

-
API| Categorization

The technical categorization is quite a mess:

e REST (REpresentational State Transfer): architecture style
e SOAP (Simple Object Access Protocol): messaging protocol specification
e RPC (Remote Procedural Call): request-response protocol

e GraphQL: query language

We will focus on REST APl as it is a primary way of the service communication
nowadays.

IIBK

-
REST in its entirety

REST architecture styles principles:

The client and the server do not know how each of them
is implemented

Sessions are stored on the client (the “stateless”
constraint)

Data must be marked as cacheable or non-cacheable

Interaction interfaces between system components must
be uniform

Network-based systems are layered, meaning every
server may just be a proxy to another server

The functionality of the client might be enhanced by the
server providing code on demand.

What does that also mean:

REST author Roy Fielding is also a co-author of
HTTP (Hypertext Transfer Protocol). So they are
literally tight together.

General terms described in the REST principles
can be interpreted and implemented in many
ways.

Term REST API has caused holy wars in the tech
community for 20 years. So, there is a RESTful
API that loosely follows some REST principles.

Videos to dive into topic (RUS):
https://www.youtube.com/live/DB2SER51mcU?si
=BcFDDrPldgCpB_0Oz and

https://www.youtube.com/live/rURUWnNsBnDA?si

=_FjCOx3taByBe1pr MBA

https://www.youtube.com/live/DB2SER51mcU?si=BcFDDrPldqCpB_Oz
https://www.youtube.com/live/DB2SER51mcU?si=BcFDDrPldqCpB_Oz
https://www.youtube.com/live/rURUWnsBnDA?si=_FjC0x3taByBe1pr
https://www.youtube.com/live/rURUWnsBnDA?si=_FjC0x3taByBe1pr

S
HTTP is the Foundation

HTTP consists of: GET /page/1 HTTP/1.1

Host: developer.mozilla.org

e Verb (GET, POST, Accept-Language: fr
PUT, PATCH, -
HTTP/1.1 200 O}
DELETE, Date: Sat, @9 Oct 2010 14:28:02 GMT

OPTIONS, TRACE) Ve’ Apache

Last-Modified: Tue, 01 Dec 2009 20:18:22 GMT

Headers ETag: "51142bc1-7449-479b075b2891b"
Accept-Ranges: bytes
BOdy Content-Length: 29769
® Response Code Content-Type: text/html
<!DOf - himi>.. (here come the 29769 bytes of the requested web page)

https://developer.mozilla.org/ru/docs/\WWeb/HTTP - 'B K

https://developer.mozilla.org/ru/docs/Web/HTTP

."B ° Belarus
Chapter

Let’s finish with tech and move to BA stuff

-
API Definition vs Implementation

API definition is a textual specification of request and response contract, logic,
and metadata:
e Aresult of business analysis activities.

e |t can be in human and/or machine-readable formats. Source code is also
a definition.

Implementation is when the APl is up and running, i.e., an executable artifact
is deployed somewhere.

IIBK

API Contract

g -

lIBK

Request

B

API Contract:
Response

Request Logic

S
API| Contract - 1

e API contract is an agreement about expected input and outcome between you and
the Clients.

e The Contract is strictly formalized, and clients agree to follow it when they start
using your API.

e The API owner takes responsibility for maintaining the consistency of the Contract.
e There can be legal punishment for breaking API contracts

e API contract can be defined prior to the implementation so both sides can work in
parallel.

IIBK

-
Backward Compatibility

e Itis a cornerstone of APl development: a
breaking change will cause changes in the
client code as soon as the APl is BRE%KING GHANGES
published.

e Thus "Agile" is not very good for APls; for
each breaking change, you consumers
pay a certain price (which amounts you
can't predict as you might not know how

they use your API) BREAKING CHANGES|EVERYWHERE

e So you need to design API in a consistent
to avoid possible changes in the future

(which is not possible). .
llBA

-
Requirements Classification

e API requirements != functional requirements; Ul requirement is the best
analogy.

e An excerpt from K. Wiegers’ “Software Requirements”:

and portability. Other classes of nonfunctional requirements describe external interfaces between
the system and the outside world. These include connections to other software systems, hardware
components, and users, as well as communication interfaces. Design and implementation con-

e BABOK technique 10.24 Interface analysis, not really much about APls.

e Requirements Engineering Standard ISO/IEC/IEEE 29148 -> Interface
Requirements.

IIBK

-
Why & What Questions

For a new API we need to understand the following things to succeed with the
requirements:

e \Why do we need this?
e What will it do?

A single API endpoint itself does not make much sense; it is a part of one or
several use cases. As a BA, you need to identify such use cases.

And then a few more important questions:

e Do we already have such an API?
e Does the system even have such functionality?

IIBK

APl Prerequisites

The next step is to define the prerequisite of an API call - authentication and
authorization:

e Authentication is about verifying clients and allowing them to communicate
with your API.

e Authorization is about permissions to enable specific clients to make
particular APl requests and see certain data.

e Another important point is whether a Consumer possesses all the necessary
input data to make a call.

IIBK

Describing Black Box

The next step is to define an input and output, describing boundaries of the black box (template):
e Request:
o path parameter - used for identification, required
o query parameters - additional filtering options, key-value, usually optional
o arequest body - JSON or XML
m optional/required
m data types
o request headers - technical metadata passed by consumer
e Response:
o response code (including error codes)

o response body

o response header - technical metadata returned from server to consumer - B u .

https://docs.google.com/spreadsheets/d/1k8BwAeZMDnQQZgulsydmBdXdqGoPx65V68K8bUGH7lg/edit?usp=sharing

Naming Conventions

There are two massive problems in software development: naming and caching. | recommend you leave
caching to the technical folks.

e There should be established naming conventions in your product/project/organization (better) for naming
URLSs, errors, and attributes.

o If there is no such convention, this is the right place to escalate.

o If no one cares, you should look for the best practices and define the convention.
e The API data model is not equal to a data model in a database:

o You don't need to provide all the attributes.

o You are not obliged to have the same name.

o You are likely to follow different naming convention

e Consistency is key - you can't just change naming afterward, as you will break backward compatibility.

IIBK

S
HTTP Error codes

e There is a predefined set of HT TP error codes

o 4xx client error - wrong data
o bBxx server error

e You can also reuse existing error codes for some business logic execution,
defining a custom error message

e There is a famous 404 - not found, but what code should be returned with an
empty search result?

IIBI-Y

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

-
Request Logic

e Basic/Direct API call: one internal call for a particular Entity object

e Composite/Aggregation API call: chain of internal calls, usually returned a
composite data structure
e The way of specifying:
o UML sequence diagram
o UML activity diagram
o Step-by-step text description

o Postman Collection

IIBI-Y

ﬁBA Belarus
Chapter

https://ilyazakharau.com/
https://www.linkedin.com/in/ilya-zakharau/

