
REQUIREMENTS & API.
Part I

Ilya Zakharau
API Platform Product Manager, 7 years of prior
BA experience

WHY I AM
DOING THIS?

1. Building API tooling and products is my
current expertise, and I want to share it with
the public.

2. Such terms as “API economy,” “API-first”,
and “API market” have become quite popular
in recent years.

3. From my observations, few Business
Analysts are proficient in API or have a
fractured understanding.

4. Offline API workshop made by the BArszawa
community last February showed demand for
that topic.

AGENDA

There will be two parts:

Part 1 will be more theoretical and more tedious.
We will talk about the definition of API and API
definition, involved actors, breaking changes,
REST & HTTP, and other basics.

Part 2 will be more practice-oriented:
● Discussing the API design-first approach
● Diving into OpenAPI specification and

related tooling
● Decomposing one API case

What is API?

From Wikipedia:

“An application programming interface (API) is a way for two or more computer
programs to communicate with each other. It is a type of software interface,
offering a service to other pieces of software.”

It is a very vast definition, but there are two main pieces:

● interface
● service

https://en.wikipedia.org/wiki/API

Definition from Sergey Konstantinov's "The API Book"

“An API is an obligation. A formal obligation to connect different programmable contexts”.

The Pont-du-Gard aqueduct. Built in the 1st century AD. Image Credit: igorelick @ pixabay

Roman aqueduct (1st century AD):

● Interconnects two areas

● Flow water is an analogy to data

● Backward compatibility has not been for
almost 2000 years

● Additional infrastructure was built to
produce and consume the water supply

https://github.com/twirl/The-API-Book
https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/

Another API definition (and last for today)

Let’s look from another perspective: API is a distribution channel.

It is similar, but quite opposite to User Interface:
● Not for end-users.

● For developers who will build their solution for their end-users based on API.

You can integrate with API as a developer (Consumer) or develop API (Producer).
Both cases have their peculiarities. But today, we talk about the latter only.

A few more definitions we need:

● API endpoint: a single instance of API with a unique address (URL). Sending
a required input to that URL triggers some command within your system and
returns an output about a successful result or failure.

Example: POST https://ecomplatform/api/v1/purchases/{purchaseId}/cancel

● API call: sending a request to an API endpoint and getting a response.

● Client: a general term to identify someone or something calling your API.

Actors and API Lifecycle
Both Producers and Consumers are
not only Developers, there are other
roles involved in the SDLC:

● Business Analysts

● Architects

● QA/QAA Engineers

● Product Owners/Managers

● Delivery/Project Managers

● etc

The Value Chain

Why BA: traditional approach (simplified)

● Usually one or several API consumers
● API does provide access to functionality
● API == functionality
● Matter of tech design, not a BA part

Why BA: modern approach
● The rise of Cloud, SaaS, and

PaaS (thank you, Amazon)
accelerated the
interconnectivity of multiple
systems and open APIs.

● That results in headless
"API-first" products (like Stripe),
where API is the primary
interface.

● Many consumers means many
stakeholders have their own
needs, so it is a work for a BA.

● Some APIs are subject to
regulations.

API Categorization

The technical categorization is quite a mess:

● REST (REpresentational State Transfer): architecture style

● SOAP (Simple Object Access Protocol): messaging protocol specification

● RPC (Remote Procedural Call): request-response protocol

● GraphQL: query language

We will focus on REST API as it is a primary way of the service communication
nowadays.

REST in its entirety
REST architecture styles principles:

● The client and the server do not know how each of them
is implemented

● Sessions are stored on the client (the “stateless”
constraint)

● Data must be marked as cacheable or non-cacheable

● Interaction interfaces between system components must
be uniform

● Network-based systems are layered, meaning every
server may just be a proxy to another server

● The functionality of the client might be enhanced by the
server providing code on demand.

What does that also mean:

● REST author Roy Fielding is also a co-author of
HTTP (Hypertext Transfer Protocol). So they are
literally tight together.

● General terms described in the REST principles
can be interpreted and implemented in many
ways.

● Term REST API has caused holy wars in the tech
community for 20 years. So, there is a RESTful
API that loosely follows some REST principles.

● Videos to dive into topic (RUS):
https://www.youtube.com/live/DB2SER51mcU?si
=BcFDDrPldqCpB_Oz and
https://www.youtube.com/live/rURUWnsBnDA?si
=_FjC0x3taByBe1pr

https://www.youtube.com/live/DB2SER51mcU?si=BcFDDrPldqCpB_Oz
https://www.youtube.com/live/DB2SER51mcU?si=BcFDDrPldqCpB_Oz
https://www.youtube.com/live/rURUWnsBnDA?si=_FjC0x3taByBe1pr
https://www.youtube.com/live/rURUWnsBnDA?si=_FjC0x3taByBe1pr

HTTP is the Foundation

HTTP consists of:

● Verb (GET, POST,
PUT, PATCH,
DELETE,
OPTIONS, TRACE)

● Headers
● Body
● Response code

https://developer.mozilla.org/ru/docs/Web/HTTP

https://developer.mozilla.org/ru/docs/Web/HTTP

Let’s finish with tech and move to BA stuff

API Definition vs Implementation

API definition is a textual specification of request and response contract, logic,
and metadata:
● A result of business analysis activities.

● It can be in human and/or machine-readable formats. Source code is also
a definition.

Implementation is when the API is up and running, i.e., an executable artifact
is deployed somewhere.

API Contract

API Contract - 1

● API contract is an agreement about expected input and outcome between you and
the Clients.

● The Contract is strictly formalized, and clients agree to follow it when they start
using your API.

● The API owner takes responsibility for maintaining the consistency of the Contract.

● There can be legal punishment for breaking API contracts

● API contract can be defined prior to the implementation so both sides can work in
parallel.

Backward Compatibility

● It is a cornerstone of API development: a
breaking change will cause changes in the
client code as soon as the API is
published.

● Thus "Agile" is not very good for APIs; for
each breaking change, you consumers
pay a certain price (which amounts you
can't predict as you might not know how
they use your API)

● So you need to design API in a consistent
to avoid possible changes in the future
(which is not possible).

Requirements Classification

● API requirements != functional requirements; UI requirement is the best
analogy.

● An excerpt from K. Wiegers’ “Software Requirements”:

● BABOK technique 10.24 Interface analysis, not really much about APIs.

● Requirements Engineering Standard ISO/IEC/IEEE 29148 -> Interface
Requirements.

Why & What Questions

For a new API we need to understand the following things to succeed with the
requirements:

● Why do we need this?
● What will it do?

A single API endpoint itself does not make much sense; it is a part of one or
several use cases. As a BA, you need to identify such use cases.

And then a few more important questions:

● Do we already have such an API?
● Does the system even have such functionality?

API Prerequisites

The next step is to define the prerequisite of an API call - authentication and
authorization:

● Authentication is about verifying clients and allowing them to communicate
with your API.

● Authorization is about permissions to enable specific clients to make
particular API requests and see certain data.

● Another important point is whether a Consumer possesses all the necessary
input data to make a call.

Describing Black Box
The next step is to define an input and output, describing boundaries of the black box (template):

● Request:

○ path parameter - used for identification, required

○ query parameters - additional filtering options, key-value, usually optional

○ a request body - JSON or XML

■ optional/required

■ data types

○ request headers - technical metadata passed by consumer

● Response:

○ response code (including error codes)

○ response body

○ response header - technical metadata returned from server to consumer

https://docs.google.com/spreadsheets/d/1k8BwAeZMDnQQZgulsydmBdXdqGoPx65V68K8bUGH7lg/edit?usp=sharing

Naming Conventions

There are two massive problems in software development: naming and caching. I recommend you leave
caching to the technical folks.

● There should be established naming conventions in your product/project/organization (better) for naming
URLs, errors, and attributes.

○ If there is no such convention, this is the right place to escalate.

○ If no one cares, you should look for the best practices and define the convention.

● The API data model is not equal to a data model in a database:

○ You don't need to provide all the attributes.

○ You are not obliged to have the same name.

○ You are likely to follow different naming convention

● Consistency is key - you can't just change naming afterward, as you will break backward compatibility.

HTTP Error codes

● There is a predefined set of HTTP error codes

○ 4xx client error - wrong data

○ 5xx server error

● You can also reuse existing error codes for some business logic execution,
defining a custom error message

● There is a famous 404 - not found, but what code should be returned with an
empty search result?

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

Request Logic

● Basic/Direct API call: one internal call for a particular Entity object

● Composite/Aggregation API call: chain of internal calls, usually returned a
composite data structure

● The way of specifying:

○ UML sequence diagram

○ UML activity diagram

○ Step-by-step text description

○ Postman Collection

End of Part 1. See you in two weeks

https://ilyazakharau.com/

https://www.linkedin.com/in/ilya-zakharau/

https://ilyazakharau.com/
https://www.linkedin.com/in/ilya-zakharau/

