
REQUIREMENTS & API. 
Part II

Ilya Zakharau
API Platform Product Manager, 7 years of prior 
BA experience



In the previous 
episode…

Two weeks ago we have covered:

● A term “API” and its implications

● API categorization and its mess

● Mythical REST

● HTTP as a foundation for (almost) everything

● API definition and implementation

● API contract as a black box

● Backward compatibility

● API in the Requirements Classifications

● Request logic, errors, etc 



AGENDA

Today we will talk about:

● “Formal” API definitions such as OpenAPI

● API design-first approach

● OpenAPI specification

● Other competing IDLs

● API Gateway 

● Backends-for-Frontends pattern

● Experience-driven API

● And review a practical case



Let’s revisit: API Definition vs Implementation

API definition is a textual specification of request and response contract, logic, 
and metadata:

● A result of business analysis activities.

● It can be in human and/or machine-readable formats. Source code is also 
a definition.

Implementation is when the API is up and running, i.e., an executable artifact 
is deployed somewhere.



Informal vs Formal specification

● Informal - any human-readable specification describing API design

● Formal - machine-readable, strictly formalized specification attached to a 
specific data format (e.g. XML, JSON)

OpenAPI is the most common formal API specification format for RESTful API

Informal formats usually tends to mimic OpenAPI but in more human-friendly 
manner

https://www.openapis.org/


Traditional approach (simplified)



API Design-first approach



Let’s see how our “Add Employee” 

example looks in OpenAPI format

https://docs.google.com/spreadsheets/d/14gsTDvi12AG-Ki-nfUduOTImIWs_wt148wNi4f2-rUM/edit?usp=sharing


A few facts about OpenAPI
● Often referred to as OAS.

● Latest stable version: 3.1.0 (link to specification).

● Typically expressed using JSON or YAML; usually works with JSON and XML.

● Version 2.0 and below of this specification were known as Swagger

● One of the most popular IDLs (Interface Definition Language) which also is DSL 
(Domain-Specific Language); de facto industry standard.

● Huge variety of tooling around it.

● Alternatives are: API Blueprint, RAML, AsyncAPI, GraphQL Schema and many 
others.

● Super tool to learn OpenAPI: https://openapi-map.apihandyman.io/

https://spec.openapis.org/oas/v3.1.0
https://openapi.tools/
https://apiblueprint.org/documentation/specification.html
https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/
https://www.asyncapi.com/
https://spec.graphql.org/
https://openapi-map.apihandyman.io/


OpenAPI seems to be too complex? Let’s try 

one of a lightweight alternatives: JSight

https://editor.jsight.io/


Wanting something more user-friendly and 

not OSS? Look no further than: Stoplight

https://stoplight.io/


What is an API Gateway?
API Gateway is a centralized platform that 
serves as an entry point for for a collection of 
microservices or backend services. It 
considers:

● Authentication and Authorization

● Request Routing, Aggregation

● Load Balancing

● Request/Response transformations

● Rate Limiting, Resilience

● Caching

● Logging, Monitoring



Backends-for-Frontends (BFF) Pattern
BFF - is a design pattern that considers 
creating dedicated backend services tailored 
to the specific needs of different client 
interfaces or user experiences.

Different client interfaces have different needs 
for:

● Mobile applications (further division on 
mobile platforms, e.g. iOS, Android)

● Web apps

● Internet-of-things

● etc



Experience-Driven (Persona) API approach

Client division might not be sufficient. 
Different Business users (aka Personas) 
require different set of APIs with different 
set response data and other specifics.

For example, taxi services like Uber/Bolt:

● Passenger API Persona

● Driver API Persona

● Taxi Fleet Manager API Persona

● Government Regulator API Persona



Practical Case of Experience-driven API



Experience-Driven Employee Search API for HR
Let’s assume on Client’s UI there will be a table with expandables rows like this one:

For that UI, Client needs a single API endpoint to return a list of active Employees so:

● Each row contains an Employee data: ID, First Name, Last Name, Department, Title, Employment Type.

● Additionally, they need to show up to 5 active Policies and Claims if they do exist. Their IDs and effective dates 
are enough.



Assumptions
Additionally let’s assume the following:

1. There is already established authentication and authorization. We don’t need 
to care about that.

2. As an input, Client will provide an Employer UID.

3. Yes, pagination is required.

4. And, please, filtering and sorting for all Row attributes.

5. All required Internal APIs are provided. They can’t be changed and exposing 
new internal APIs it not an option.

6. Our previous “Add Employee” API is related to the same Persona.



Considerations
1. For Internal API we act as Consumer, so we need to find the APIs we need.

2. We also need to make sure internal APIs possess data we need + they 
support pagination and have sorting and filtering capabilities.

3. We need to make sure that we, as Client, possess required input data to call 
those APIs.

4. We need to know which IDs should be displayed on UI.

5. We need to know the next API calls to be made, so we can ensure having a 
right input.

6. What permissions are required to call those internal APIs.

Case study on GitHub

https://github.com/averlarque/api-requirements-workshop/blob/main/definitions/employee-list-definition.md


I will publish the Reading list on my blog and 

LinkedIn soon. 

Stay tuned and thank you all for you attention!

https://ilyazakharau.com/

https://www.linkedin.com/in/ilya-zakharau/

https://ilyazakharau.com/
https://www.linkedin.com/in/ilya-zakharau/

